Source code for datashader.glyphs.line

from __future__ import absolute_import, division
from enum import Enum
import math
import numpy as np
from toolz import memoize

from datashader.glyphs.points import _PointLike, _GeometryLike
from datashader.utils import (isnull, isreal, ngjit, nanmax_in_place,
                              nanmin_in_place, nansum_in_place, parallel_fill)
from numba import cuda
from numba.extending import overload


try:
    import cudf
    import cupy as cp
    from ..transfer_functions._cuda_utils import cuda_args
except ImportError:
    cudf = None
    cuda_args = None


# This Enum should eventually be replaced with attributes
# and/or member functions of Reduction classes.
class AntialiasCombination(Enum):
    NONE = 0
    SUM_1AGG = 1
    SUM_2AGG = 2
    MIN = 3
    MAX = 4


def _use_2_stage_agg(antialias_combination):
    return antialias_combination in (AntialiasCombination.SUM_2AGG, AntialiasCombination.MIN)


class _AntiAliasedLine(object):
    """ Methods common to all lines. """
    _line_width = 0  # Use antialiasing if > 0.
    _antialias_combination = AntialiasCombination.NONE

    def set_antialias_combination(self, antialias_combination):
        self._antialias_combination = antialias_combination

    def set_line_width(self, line_width):
        self._line_width = line_width

    def _build_extend(self, x_mapper, y_mapper, info, append):
        return self._internal_build_extend(
                x_mapper, y_mapper, info, append, self._line_width, self.antialias_combination)

    @property
    def antialias_combination(self):
        if self._line_width > 0:
            return self._antialias_combination
        else:
            return AntialiasCombination.NONE


[docs]class LineAxis0(_PointLike, _AntiAliasedLine): """A line, with vertices defined by ``x`` and ``y``. Parameters ---------- x, y : str Column names for the x and y coordinates of each vertex. """ @memoize def _internal_build_extend( self, x_mapper, y_mapper, info, append, line_width, antialias_combination): expand_aggs_and_cols = self.expand_aggs_and_cols(append) map_onto_pixel = _build_map_onto_pixel_for_line( x_mapper, y_mapper, line_width > 0) draw_segment = _build_draw_segment( append, map_onto_pixel, expand_aggs_and_cols, line_width, antialias_combination ) extend_cpu, extend_cuda = _build_extend_line_axis0( draw_segment, expand_aggs_and_cols, antialias_combination ) x_name = self.x y_name = self.y def extend(aggs, df, vt, bounds, plot_start=True): sx, tx, sy, ty = vt xmin, xmax, ymin, ymax = bounds aggs_and_cols = aggs + info(df) if cudf and isinstance(df, cudf.DataFrame): xs = self.to_cupy_array(df, x_name) ys = self.to_cupy_array(df, y_name) do_extend = extend_cuda[cuda_args(xs.shape)] else: xs = df.loc[:, x_name].to_numpy() ys = df.loc[:, y_name].to_numpy() do_extend = extend_cpu # line may be clipped, then mapped to pixels do_extend( sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, plot_start, *aggs_and_cols ) return extend
[docs]class LineAxis0Multi(_PointLike, _AntiAliasedLine): """ """ def validate(self, in_dshape): if not all([isreal(in_dshape.measure[str(xcol)]) for xcol in self.x]): raise ValueError('x columns must be real') elif not all([isreal(in_dshape.measure[str(ycol)]) for ycol in self.y]): raise ValueError('y columns must be real') @property def x_label(self): return 'x' @property def y_label(self): return 'y' def required_columns(self): return self.x + self.y def compute_x_bounds(self, df): bounds_list = [self._compute_bounds(df[x]) for x in self.x] mins, maxes = zip(*bounds_list) return self.maybe_expand_bounds((min(mins), max(maxes))) def compute_y_bounds(self, df): bounds_list = [self._compute_bounds(df[y]) for y in self.y] mins, maxes = zip(*bounds_list) return self.maybe_expand_bounds((min(mins), max(maxes))) @memoize def compute_bounds_dask(self, ddf): r = ddf.map_partitions(lambda df: np.array([[ np.nanmin([np.nanmin(df[c].values).item() for c in self.x]), np.nanmax([np.nanmax(df[c].values).item() for c in self.x]), np.nanmin([np.nanmin(df[c].values).item() for c in self.y]), np.nanmax([np.nanmax(df[c].values).item() for c in self.y])]] )).compute() x_extents = np.nanmin(r[:, 0]), np.nanmax(r[:, 1]) y_extents = np.nanmin(r[:, 2]), np.nanmax(r[:, 3]) return (self.maybe_expand_bounds(x_extents), self.maybe_expand_bounds(y_extents)) @memoize def _internal_build_extend( self, x_mapper, y_mapper, info, append, line_width, antialias_combination): expand_aggs_and_cols = self.expand_aggs_and_cols(append) map_onto_pixel = _build_map_onto_pixel_for_line( x_mapper, y_mapper, line_width > 0) draw_segment = _build_draw_segment( append, map_onto_pixel, expand_aggs_and_cols, line_width, antialias_combination ) extend_cpu, extend_cuda = _build_extend_line_axis0_multi( draw_segment, expand_aggs_and_cols, antialias_combination ) x_names = self.x y_names = self.y def extend(aggs, df, vt, bounds, plot_start=True): sx, tx, sy, ty = vt xmin, xmax, ymin, ymax = bounds aggs_and_cols = aggs + info(df) if cudf and isinstance(df, cudf.DataFrame): xs = self.to_cupy_array(df, x_names) ys = self.to_cupy_array(df, y_names) do_extend = extend_cuda[cuda_args(xs.shape)] else: xs = df.loc[:, list(x_names)].to_numpy() ys = df.loc[:, list(y_names)].to_numpy() do_extend = extend_cpu # line may be clipped, then mapped to pixels do_extend( sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, plot_start, *aggs_and_cols, ) return extend
[docs]class LinesAxis1(_PointLike, _AntiAliasedLine): """A collection of lines (on line per row) with vertices defined by the lists of columns in ``x`` and ``y`` Parameters ---------- x, y : list Lists of column names for the x and y coordinates """ def validate(self, in_dshape): if not all([isreal(in_dshape.measure[str(xcol)]) for xcol in self.x]): raise ValueError('x columns must be real') elif not all([isreal(in_dshape.measure[str(ycol)]) for ycol in self.y]): raise ValueError('y columns must be real') unique_x_measures = set(in_dshape.measure[str(xcol)] for xcol in self.x) if len(unique_x_measures) > 1: raise ValueError('x columns must have the same data type') unique_y_measures = set(in_dshape.measure[str(ycol)] for ycol in self.y) if len(unique_y_measures) > 1: raise ValueError('y columns must have the same data type') def required_columns(self): return self.x + self.y @property def x_label(self): return 'x' @property def y_label(self): return 'y' def compute_x_bounds(self, df): xs = tuple(df[xlabel] for xlabel in self.x) bounds_list = [self._compute_bounds(xcol) for xcol in xs] mins, maxes = zip(*bounds_list) return self.maybe_expand_bounds((min(mins), max(maxes))) def compute_y_bounds(self, df): ys = tuple(df[ylabel] for ylabel in self.y) bounds_list = [self._compute_bounds(ycol) for ycol in ys] mins, maxes = zip(*bounds_list) return self.maybe_expand_bounds((min(mins), max(maxes))) @memoize def compute_bounds_dask(self, ddf): r = ddf.map_partitions(lambda df: np.array([[ np.nanmin([np.nanmin(df[c].values).item() for c in self.x]), np.nanmax([np.nanmax(df[c].values).item() for c in self.x]), np.nanmin([np.nanmin(df[c].values).item() for c in self.y]), np.nanmax([np.nanmax(df[c].values).item() for c in self.y])]] )).compute() x_extents = np.nanmin(r[:, 0]), np.nanmax(r[:, 1]) y_extents = np.nanmin(r[:, 2]), np.nanmax(r[:, 3]) return (self.maybe_expand_bounds(x_extents), self.maybe_expand_bounds(y_extents)) @memoize def _internal_build_extend( self, x_mapper, y_mapper, info, append, line_width, antialias_combination): expand_aggs_and_cols = self.expand_aggs_and_cols(append) map_onto_pixel = _build_map_onto_pixel_for_line( x_mapper, y_mapper, line_width > 0) draw_segment = _build_draw_segment( append, map_onto_pixel, expand_aggs_and_cols, line_width, antialias_combination ) extend_cpu, extend_cuda = _build_extend_line_axis1_none_constant( draw_segment, expand_aggs_and_cols, antialias_combination ) x_names = self.x y_names = self.y def extend(aggs, df, vt, bounds, plot_start=True): sx, tx, sy, ty = vt xmin, xmax, ymin, ymax = bounds aggs_and_cols = aggs + info(df) if cudf and isinstance(df, cudf.DataFrame): xs = self.to_cupy_array(df, x_names) ys = self.to_cupy_array(df, y_names) do_extend = extend_cuda[cuda_args(xs.shape)] else: xs = df.loc[:, list(x_names)].to_numpy() ys = df.loc[:, list(y_names)].to_numpy() do_extend = extend_cpu do_extend( sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ) return extend
[docs]class LinesAxis1XConstant(LinesAxis1): """ """ def validate(self, in_dshape): if not all([isreal(in_dshape.measure[str(ycol)]) for ycol in self.y]): raise ValueError('y columns must be real') unique_y_measures = set(in_dshape.measure[str(ycol)] for ycol in self.y) if len(unique_y_measures) > 1: raise ValueError('y columns must have the same data type') def required_columns(self): return self.y def compute_x_bounds(self, *args): x_min = np.nanmin(self.x) x_max = np.nanmax(self.x) return self.maybe_expand_bounds((x_min, x_max)) @memoize def compute_bounds_dask(self, ddf): r = ddf.map_partitions(lambda df: np.array([[ np.nanmin([np.nanmin(df[c].values).item() for c in self.y]), np.nanmax([np.nanmax(df[c].values).item() for c in self.y])]] )).compute() y_extents = np.nanmin(r[:, 0]), np.nanmax(r[:, 1]) return (self.compute_x_bounds(), self.maybe_expand_bounds(y_extents)) @memoize def _internal_build_extend( self, x_mapper, y_mapper, info, append, line_width, antialias_combination): expand_aggs_and_cols = self.expand_aggs_and_cols(append) map_onto_pixel = _build_map_onto_pixel_for_line( x_mapper, y_mapper, line_width > 0) draw_segment = _build_draw_segment( append, map_onto_pixel, expand_aggs_and_cols, line_width, antialias_combination ) extend_cpu, extend_cuda = _build_extend_line_axis1_x_constant( draw_segment, expand_aggs_and_cols, antialias_combination ) x_values = self.x y_names = self.y def extend(aggs, df, vt, bounds, plot_start=True): sx, tx, sy, ty = vt xmin, xmax, ymin, ymax = bounds aggs_and_cols = aggs + info(df) if cudf and isinstance(df, cudf.DataFrame): xs = cp.asarray(x_values) ys = self.to_cupy_array(df, y_names) do_extend = extend_cuda[cuda_args(ys.shape)] else: xs = x_values ys = df.loc[:, list(y_names)].to_numpy() do_extend = extend_cpu do_extend( sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ) return extend
[docs]class LinesAxis1YConstant(LinesAxis1): """ """ def validate(self, in_dshape): if not all([isreal(in_dshape.measure[str(xcol)]) for xcol in self.x]): raise ValueError('x columns must be real') unique_x_measures = set(in_dshape.measure[str(xcol)] for xcol in self.x) if len(unique_x_measures) > 1: raise ValueError('x columns must have the same data type') def required_columns(self): return self.x def compute_y_bounds(self, *args): y_min = np.nanmin(self.y) y_max = np.nanmax(self.y) return self.maybe_expand_bounds((y_min, y_max)) @memoize def compute_bounds_dask(self, ddf): r = ddf.map_partitions(lambda df: np.array([[ np.nanmin([np.nanmin(df[c].values).item() for c in self.x]), np.nanmax([np.nanmax(df[c].values).item() for c in self.x])]] )).compute() x_extents = np.nanmin(r[:, 0]), np.nanmax(r[:, 1]) return (self.maybe_expand_bounds(x_extents), self.compute_y_bounds()) @memoize def _internal_build_extend( self, x_mapper, y_mapper, info, append, line_width, antialias_combination): expand_aggs_and_cols = self.expand_aggs_and_cols(append) map_onto_pixel = _build_map_onto_pixel_for_line( x_mapper, y_mapper, line_width > 0) draw_segment = _build_draw_segment( append, map_onto_pixel, expand_aggs_and_cols, line_width, antialias_combination ) extend_cpu, extend_cuda = _build_extend_line_axis1_y_constant( draw_segment, expand_aggs_and_cols, antialias_combination ) x_names = self.x y_values = self.y def extend(aggs, df, vt, bounds, plot_start=True): sx, tx, sy, ty = vt xmin, xmax, ymin, ymax = bounds aggs_and_cols = aggs + info(df) if cudf and isinstance(df, cudf.DataFrame): xs = self.to_cupy_array(df, x_names) ys = cp.asarray(y_values) do_extend = extend_cuda[cuda_args(xs.shape)] else: xs = df.loc[:, list(x_names)].to_numpy() ys = y_values do_extend = extend_cpu do_extend( sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ) return extend
[docs]class LinesAxis1Ragged(_PointLike, _AntiAliasedLine): def validate(self, in_dshape): try: from datashader.datatypes import RaggedDtype except ImportError: RaggedDtype = type(None) if not isinstance(in_dshape[str(self.x)], RaggedDtype): raise ValueError('x must be a RaggedArray') elif not isinstance(in_dshape[str(self.y)], RaggedDtype): raise ValueError('y must be a RaggedArray') def required_columns(self): return (self.x,) + (self.y,) def compute_x_bounds(self, df): bounds = self._compute_bounds(df[self.x].array.flat_array) return self.maybe_expand_bounds(bounds) def compute_y_bounds(self, df): bounds = self._compute_bounds(df[self.y].array.flat_array) return self.maybe_expand_bounds(bounds) @memoize def compute_bounds_dask(self, ddf): r = ddf.map_partitions(lambda df: np.array([[ np.nanmin(df[self.x].array.flat_array).item(), np.nanmax(df[self.x].array.flat_array).item(), np.nanmin(df[self.y].array.flat_array).item(), np.nanmax(df[self.y].array.flat_array).item()]] )).compute() x_extents = np.nanmin(r[:, 0]), np.nanmax(r[:, 1]) y_extents = np.nanmin(r[:, 2]), np.nanmax(r[:, 3]) return (self.maybe_expand_bounds(x_extents), self.maybe_expand_bounds(y_extents)) @memoize def _internal_build_extend( self, x_mapper, y_mapper, info, append, line_width, antialias_combination): expand_aggs_and_cols = self.expand_aggs_and_cols(append) map_onto_pixel = _build_map_onto_pixel_for_line( x_mapper, y_mapper, line_width > 0) draw_segment = _build_draw_segment( append, map_onto_pixel, expand_aggs_and_cols, line_width, antialias_combination ) extend_cpu = _build_extend_line_axis1_ragged( draw_segment, expand_aggs_and_cols, antialias_combination ) x_name = self.x y_name = self.y def extend(aggs, df, vt, bounds, plot_start=True): sx, tx, sy, ty = vt xmin, xmax, ymin, ymax = bounds xs = df[x_name].array ys = df[y_name].array aggs_and_cols = aggs + info(df) # line may be clipped, then mapped to pixels extend_cpu( sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ) return extend
[docs]class LineAxis1Geometry(_GeometryLike, _AntiAliasedLine): @property def geom_dtypes(self): from spatialpandas.geometry import ( LineDtype, MultiLineDtype, RingDtype, PolygonDtype, MultiPolygonDtype ) return (LineDtype, MultiLineDtype, RingDtype, PolygonDtype, MultiPolygonDtype) @memoize def _internal_build_extend( self, x_mapper, y_mapper, info, append, line_width, antialias_combination): from spatialpandas.geometry import ( PolygonArray, MultiPolygonArray, RingArray ) expand_aggs_and_cols = self.expand_aggs_and_cols(append) map_onto_pixel = _build_map_onto_pixel_for_line( x_mapper, y_mapper, line_width > 0) draw_segment = _build_draw_segment( append, map_onto_pixel, expand_aggs_and_cols, line_width, antialias_combination ) perform_extend_cpu = _build_extend_line_axis1_geometry( draw_segment, expand_aggs_and_cols, antialias_combination ) geometry_name = self.geometry def extend(aggs, df, vt, bounds, plot_start=True): sx, tx, sy, ty = vt xmin, xmax, ymin, ymax = bounds aggs_and_cols = aggs + info(df) geom_array = df[geometry_name].array # Use type to decide whether geometry represents a closed . # We skip for closed geometries so as not to double count the first/last # pixel if isinstance(geom_array, (PolygonArray, MultiPolygonArray)): # Convert polygon array to multi line of boundary geom_array = geom_array.boundary closed_rings = True elif isinstance(geom_array, RingArray): closed_rings = True else: closed_rings = False perform_extend_cpu( sx, tx, sy, ty, xmin, xmax, ymin, ymax, geom_array, closed_rings, *aggs_and_cols ) return extend
def _build_map_onto_pixel_for_line(x_mapper, y_mapper, want_antialias=False): @ngjit def map_onto_pixel_snap(sx, tx, sy, ty, xmin, xmax, ymin, ymax, x, y): """Map points onto pixel grid. Points falling on upper bound are mapped into previous bin. If the line has been clipped, x and y will have been computed to lie on the bounds; we compare point and bounds in integer space to avoid fp error. In contrast, with auto-ranging, a point on the bounds will be the same floating point number as the bound, so comparison in fp representation of continuous space or in integer space doesn't change anything. """ xx = int(x_mapper(x) * sx + tx) yy = int(y_mapper(y) * sy + ty) # Note that sx and tx were designed so that # x_mapper(xmax) * sx + tx equals the width of the canvas in pixels # # Likewise, sy and ty were designed so that # y_mapper(ymax) * sy + ty equals the height of the canvas in pixels # # We round these results to integers (rather than casting to integers # with the int constructor) to handle cases where floating-point # precision errors results in a value just under the integer number # of pixels. xxmax = round(x_mapper(xmax) * sx + tx) yymax = round(y_mapper(ymax) * sy + ty) return (xx - 1 if xx == xxmax else xx, yy - 1 if yy == yymax else yy) @ngjit def map_onto_pixel_no_snap(sx, tx, sy, ty, xmin, xmax, ymin, ymax, x, y): xx = x_mapper(x)*sx + tx - 0.5 yy = y_mapper(y)*sy + ty - 0.5 return xx, yy if want_antialias: return map_onto_pixel_no_snap else: return map_onto_pixel_snap @ngjit def _liang_barsky(xmin, xmax, ymin, ymax, x0, x1, y0, y1, skip): """ An implementation of the Liang-Barsky line clipping algorithm. https://en.wikipedia.org/wiki/Liang%E2%80%93Barsky_algorithm """ # Check if line is fully outside viewport if x0 < xmin and x1 < xmin: skip = True elif x0 > xmax and x1 > xmax: skip = True elif y0 < ymin and y1 < ymin: skip = True elif y0 > ymax and y1 > ymax: skip = True t0, t1 = 0, 1 dx1 = x1 - x0 t0, t1, accept = _clipt(-dx1, x0 - xmin, t0, t1) if not accept: skip = True t0, t1, accept = _clipt(dx1, xmax - x0, t0, t1) if not accept: skip = True dy1 = y1 - y0 t0, t1, accept = _clipt(-dy1, y0 - ymin, t0, t1) if not accept: skip = True t0, t1, accept = _clipt(dy1, ymax - y0, t0, t1) if not accept: skip = True if t1 < 1: clipped_end = True x1 = x0 + t1 * dx1 y1 = y0 + t1 * dy1 else: clipped_end = False if t0 > 0: # If x0 is clipped, we need to plot the new start clipped_start = True x0 = x0 + t0 * dx1 y0 = y0 + t0 * dy1 else: clipped_start = False return x0, x1, y0, y1, skip, clipped_start, clipped_end @ngjit def _clipt(p, q, t0, t1): accept = True if p < 0 and q < 0: r = q / p if r > t1: accept = False elif r > t0: t0 = r elif p > 0 and q < p: r = q / p if r < t0: accept = False elif r < t1: t1 = r elif q < 0: accept = False return t0, t1, accept @ngjit def _clamp(x, low, high): # Clamp ``x`` in the range ``low`` to ``high``. return max(low, min(x, high)) @ngjit def _linearstep(edge0, edge1, x): t = _clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0) return t def _agg2d_with_scale(aggs_and_cols, i): # Python implementation for use when Numba is disabled. agg2or3d = aggs_and_cols[0] if agg2or3d.ndim == 2: agg = aggs_and_cols[0] # 2D array # Scale by column value if present. scale = 1.0 if len(aggs_and_cols) == 1 else aggs_and_cols[1][i] return agg, scale elif agg2or3d.ndim == 3: cat_index = aggs_and_cols[1][i] agg = aggs_and_cols[0][:, :, cat_index] # 2D array return agg, 1.0 else: raise TypeError("Not supported") @overload(_agg2d_with_scale) def _overload_agg2d_with_scale(aggs_and_cols, i): # pragma: no cover # Return different implementation based on whether the first array in # aggs_and_cols is 2D or 3D. agg2or3d = aggs_and_cols[0] if agg2or3d.ndim == 2: def impl(aggs_and_cols, i): agg = aggs_and_cols[0] # 2D array # Scale by column value if present. scale = 1.0 if len(aggs_and_cols) == 1 else aggs_and_cols[1][i] return agg, scale return impl elif agg2or3d.ndim == 3: def impl(aggs_and_cols, i): cat_index = aggs_and_cols[1][i] agg = aggs_and_cols[0][:, :, cat_index] # 2D array return agg, 1.0 return impl else: raise TypeError("Not supported") @ngjit def _full_antialias(line_width, antialias_combination, i, x0, x1, y0, y1, segment_start, segment_end, xm, ym, *aggs_and_cols): # Need to deal with zero-length segments as they have no direction. if x0 == x1 and y0 == y1: return # Scan occurs in y-direction. But wish to scan in the shortest direction, # so if |x0-x1| < |y0-y1| then flip (x,y) coords for maths and flip back # again before setting pixels. flip_xy = abs(x0-x1) < abs(y0-y1) if flip_xy: x0, y0 = y0, x0 x1, y1 = y1, x1 xm, ym = ym, xm agg, scale = _agg2d_with_scale(aggs_and_cols, i) # line_width less than 1 is rendered as 1 but with lower intensity. if line_width < 1.0: scale *= line_width line_width = 1.0 aa = 1.0 halfwidth = 0.5*(line_width + aa) # Want y0 <= y1, so switch vertical direction if this is not so. flip_order = y1 < y0 or (y1 == y0 and x1 < x0) # Start (x0, y0), end (y0, y1) # c1 +-------------+ c2 along | right # (x0, y0) | o o | (x1, y1) vector | vector # c0 +-------------+ c3 ----> v alongx = float(x1 - x0) alongy = float(y1 - y0) # Always +ve length = math.sqrt(alongx**2 + alongy**2) alongx /= length alongy /= length rightx = alongy righty = -alongx # 4 corners, x and y. if flip_order: cx = np.asarray([x1 - halfwidth*( rightx - alongx), x1 - halfwidth*(-rightx - alongx), x0 - halfwidth*(-rightx + alongx), x0 - halfwidth*( rightx + alongx)]) cy = np.asarray([y1 - halfwidth*( righty - alongy), y1 - halfwidth*(-righty - alongy), y0 - halfwidth*(-righty + alongy), y0 - halfwidth*( righty + alongy)]) else: cx = np.asarray([x0 + halfwidth*( rightx - alongx), x0 + halfwidth*(-rightx - alongx), x1 + halfwidth*(-rightx + alongx), x1 + halfwidth*( rightx + alongx)]) cy = np.asarray([y0 + halfwidth*( righty - alongy), y0 + halfwidth*(-righty - alongy), y1 + halfwidth*(-righty + alongy), y1 + halfwidth*( righty + alongy)]) xmax = agg.shape[1]-1 ymax = agg.shape[0]-1 if flip_xy: xmax, ymax = ymax, xmax def clip_x(x): return _clamp(x, 0, xmax) def clip_y(y): return _clamp(y, 0, ymax) def x_intercept(y, corner0, corner1): # Return x value of intercept between line at constant y and line # between corner points. if cy[corner0] == cy[corner1]: # Line is horizontal, return the "upper", i.e. right-hand, end of it. return cx[corner1] frac = (y - cy[corner0]) / (cy[corner1] - cy[corner0]) # In range 0..1 return cx[corner0] + frac*(cx[corner1] - cx[corner0]) # Index of lowest-y point. if flip_order: lowindex = 0 if x0 > x1 else 1 else: lowindex = 0 if x1 > x0 else 1 # If True can overwrite each pixel multiple times because using max for # the overwriting. If False can only write each pixel once per segment # and its previous segment. # Argument xm, ym are only valid if overwrite and segment_start are False. overwrite = (antialias_combination != AntialiasCombination.SUM_1AGG) if not overwrite and not segment_start: prev_alongx = x0 - xm prev_alongy = y0 - ym prev_length = math.sqrt(prev_alongx**2 + prev_alongy**2) if prev_length > 0.0: prev_alongx /= prev_length prev_alongy /= prev_length prev_rightx = prev_alongy prev_righty = -prev_alongx else: overwrite = True # y limits of scan. ystart = clip_y(math.ceil(cy[lowindex])) yend = clip_y(math.floor(cy[(lowindex+2) % 4])) # Need to know which edges are to left and right; both will change. ll = lowindex # Index of lower point of left edge. lu = (ll + 1) % 4 # Index of upper point of left edge. rl = lowindex # Index of lower point of right edge. ru = (rl + 3) % 4 # Index of upper point of right edge. for y in range(ystart, yend+1): if ll == lowindex and y > cy[lu]: ll = lu lu = (ll + 1) % 4 if rl == lowindex and y > cy[ru]: rl = ru ru = (rl + 3) % 4 # Find x limits of scan at this y. xleft = clip_x(math.ceil(x_intercept(y, ll, lu))) xright = clip_x(math.floor(x_intercept(y, rl, ru))) for x in range(xleft, xright+1): along = (x-x0)*alongx + (y-y0)*alongy # dot product prev_correction = False if along < 0.0: # Before start of segment if overwrite or segment_start or (x-x0)*prev_alongx + (y-y0)*prev_alongy > 0.0: distance = np.sqrt((x-x0)**2 + (y-y0)**2) # round join/end cap else: continue elif along > length: # After end of segment if overwrite or segment_end: distance = np.sqrt((x-x1)**2 + (y-y1)**2) # round join/end cap else: continue else: # Within segment distance = abs((x-x0)*rightx + (y-y0)*righty) if not overwrite and not segment_start and \ -prev_length <= (x-x0)*prev_alongx + (y-y0)*prev_alongy <= 0.0 and \ abs((x-x0)*prev_rightx + (y-y0)*prev_righty) <= halfwidth: prev_correction = True value = 1.0 - _linearstep(0.5*(line_width - aa), halfwidth, distance) value *= scale if prev_correction: # Already set pixel from previous segment, need to correct it prev_distance = abs((x-x0)*prev_rightx + (y-y0)*prev_righty) prev_value = 1.0 - _linearstep(0.5*(line_width - aa), halfwidth, prev_distance) prev_value *= scale if value > prev_value: correction = value - prev_value xx, yy = (y, x) if flip_xy else (x, y) if isnull(agg[yy, xx]): agg[yy, xx] = correction else: agg[yy, xx] += correction elif value > 0.0: xx, yy = (y, x) if flip_xy else (x, y) if antialias_combination == AntialiasCombination.SUM_1AGG: if isnull(agg[yy, xx]): agg[yy, xx] = value else: agg[yy, xx] += value else: if isnull(agg[yy, xx]) or value > agg[yy, xx]: agg[yy, xx] = value def _build_bresenham(expand_aggs_and_cols): """Specialize a bresenham kernel for a given append/axis combination""" @ngjit @expand_aggs_and_cols def _bresenham(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, segment_start, x0, x1, y0, y1, clipped, append, *aggs_and_cols): """Draw a line segment using Bresenham's algorithm This method plots a line segment with integer coordinates onto a pixel grid. """ dx = x1 - x0 ix = (dx > 0) - (dx < 0) dx = abs(dx) * 2 dy = y1 - y0 iy = (dy > 0) - (dy < 0) dy = abs(dy) * 2 # If vertices weren't clipped and are concurrent in integer space, # call append and return, so that the second vertex won't be hit below. if not clipped and not (dx | dy): append(i, x0, y0, *aggs_and_cols) return if segment_start: append(i, x0, y0, *aggs_and_cols) if dx >= dy: error = 2 * dy - dx while x0 != x1: if error >= 0 and (error or ix > 0): error -= 2 * dx y0 += iy error += 2 * dy x0 += ix append(i, x0, y0, *aggs_and_cols) else: error = 2 * dx - dy while y0 != y1: if error >= 0 and (error or iy > 0): error -= 2 * dy x0 += ix error += 2 * dx y0 += iy append(i, x0, y0, *aggs_and_cols) return _bresenham def _build_draw_segment(append, map_onto_pixel, expand_aggs_and_cols, line_width, antialias_combination): """Specialize a line plotting kernel for a given append/axis combination""" _bresenham = _build_bresenham(expand_aggs_and_cols) @ngjit @expand_aggs_and_cols def draw_segment( i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, segment_start, segment_end, x0, x1, y0, y1, xm, ym, *aggs_and_cols ): # xm, ym are only valid if segment_start is True. # NOTE: The slightly bizarre variable versioning herein for variables # x0, y0, y0, y1 is to deal with Numba not having SSA form prior to # version 0.49.0. The result of lack of SSA is that the type inference # algorithms would widen types that are multiply defined as would be the # case in code such as `x, y = function(x, y)` if the function returned # a wider type for x, y then the input x, y. skip = False # If any of the coordinates are NaN, there's a discontinuity. # Skip the entire segment. if isnull(x0) or isnull(y0) or isnull(x1) or isnull(y1): skip = True # Use Liang-Barsky to clip the segment to a bounding box x0_1, x1_1, y0_1, y1_1, skip, clipped_start, clipped_end = \ _liang_barsky(xmin, xmax, ymin, ymax, x0, x1, y0, y1, skip) if not skip: clipped = clipped_start or clipped_end segment_start = segment_start or clipped_start x0_2, y0_2 = map_onto_pixel( sx, tx, sy, ty, xmin, xmax, ymin, ymax, x0_1, y0_1 ) x1_2, y1_2 = map_onto_pixel( sx, tx, sy, ty, xmin, xmax, ymin, ymax, x1_1, y1_1 ) if line_width > 0.0: if segment_start: xm_2 = ym_2 = 0.0 else: xm_2, ym_2 = map_onto_pixel( sx, tx, sy, ty, xmin, xmax, ymin, ymax, xm, ym) _full_antialias(line_width, antialias_combination, i, x0_2, x1_2, y0_2, y1_2, segment_start, segment_end, xm_2, ym_2, *aggs_and_cols) else: _bresenham(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, segment_start, x0_2, x1_2, y0_2, y1_2, clipped, append, *aggs_and_cols) return draw_segment def _build_extend_line_axis0(draw_segment, expand_aggs_and_cols, antialias_combination): @ngjit @expand_aggs_and_cols def perform_extend_line(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, plot_start, xs, ys, *aggs_and_cols): x0 = xs[i] y0 = ys[i] x1 = xs[i + 1] y1 = ys[i + 1] segment_start = (plot_start if i == 0 else (isnull(xs[i - 1]) or isnull(ys[i - 1]))) segment_end = (i == len(xs)-2) or isnull(xs[i+2]) or isnull(ys[i+2]) if segment_start or antialias_combination != AntialiasCombination.SUM_1AGG: xm = 0.0 ym = 0.0 else: xm = xs[i-1] ym = ys[i-1] draw_segment(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, segment_start, segment_end, x0, x1, y0, y1, xm, ym, *aggs_and_cols) @ngjit @expand_aggs_and_cols def extend_cpu(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, plot_start, *aggs_and_cols): """Aggregate along a line formed by ``xs`` and ``ys``""" nrows = xs.shape[0] for i in range(nrows - 1): perform_extend_line(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, plot_start, xs, ys, *aggs_and_cols) @cuda.jit @expand_aggs_and_cols def extend_cuda(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, plot_start, *aggs_and_cols): i = cuda.grid(1) if i < xs.shape[0] - 1: perform_extend_line(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, plot_start, xs, ys, *aggs_and_cols) return extend_cpu, extend_cuda @ngjit def _combine_in_place(accum_agg, other_agg, antialias_combination): if antialias_combination == AntialiasCombination.MAX: nanmax_in_place(accum_agg, other_agg) elif antialias_combination == AntialiasCombination.MIN: nanmin_in_place(accum_agg, other_agg) else: nansum_in_place(accum_agg, other_agg) def _build_extend_line_axis0_multi(draw_segment, expand_aggs_and_cols, antialias_combination): @ngjit @expand_aggs_and_cols def perform_extend_line(i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, plot_start, xs, ys, *aggs_and_cols): x0 = xs[i, j] y0 = ys[i, j] x1 = xs[i + 1, j] y1 = ys[i + 1, j] segment_start = (plot_start if i == 0 else (isnull(xs[i - 1, j]) or isnull(ys[i - 1, j]))) segment_end = (i == len(xs)-2) or isnull(xs[i+2, j]) or isnull(ys[i+2, j]) if segment_start or antialias_combination != AntialiasCombination.SUM_1AGG: xm = 0.0 ym = 0.0 else: xm = xs[i-1, j] ym = ys[i-1, j] draw_segment(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, segment_start, segment_end, x0, x1, y0, y1, xm, ym, *aggs_and_cols) @ngjit #@expand_aggs_and_cols def extend_cpu(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, plot_start, *aggs_and_cols): """Aggregate along a line formed by ``xs`` and ``ys``""" nrows, ncols = xs.shape for j in range(ncols): for i in range(nrows - 1): perform_extend_line(i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, plot_start, xs, ys, *aggs_and_cols) @ngjit #@expand_aggs_and_cols def extend_cpu_antialias_2agg(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, plot_start, *aggs_and_cols): """Aggregate along a line formed by ``xs`` and ``ys``""" null_value = np.nan accum_agg = aggs_and_cols[0] temp_agg = np.full_like(accum_agg, null_value, dtype=np.float32) temp_aggs_and_cols = (temp_agg,) + aggs_and_cols[1:] nrows, ncols = xs.shape for j in range(ncols): if j > 0: parallel_fill(temp_agg, null_value) for i in range(nrows - 1): perform_extend_line(i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, plot_start, xs, ys, *temp_aggs_and_cols) # Combined canvas/agg/reduction from above with the others. if j == 0: accum_agg[:] = temp_agg[:] else: _combine_in_place(accum_agg, temp_agg, antialias_combination) @cuda.jit @expand_aggs_and_cols def extend_cuda(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, plot_start, *aggs_and_cols): i, j = cuda.grid(2) if i < xs.shape[0] - 1 and j < xs.shape[1]: perform_extend_line(i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, plot_start, xs, ys, *aggs_and_cols) if _use_2_stage_agg(antialias_combination): return extend_cpu_antialias_2agg, extend_cuda else: return extend_cpu, extend_cuda def _build_extend_line_axis1_none_constant(draw_segment, expand_aggs_and_cols, antialias_combination): @ngjit @expand_aggs_and_cols def perform_extend_line( i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ): x0 = xs[i, j] y0 = ys[i, j] x1 = xs[i, j + 1] y1 = ys[i, j + 1] segment_start = ( (j == 0) or isnull(xs[i, j - 1]) or isnull(ys[i, j - 1]) ) segment_end = (j == xs.shape[1]-2) or isnull(xs[i, j+2]) or isnull(ys[i, j+2]) if segment_start or antialias_combination != AntialiasCombination.SUM_1AGG: xm = 0.0 ym = 0.0 else: xm = xs[i, j-1] ym = ys[i, j-1] draw_segment(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, segment_start, segment_end, x0, x1, y0, y1, xm, ym, *aggs_and_cols) @ngjit #@expand_aggs_and_cols def extend_cpu(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols): ncols = xs.shape[1] for i in range(xs.shape[0]): for j in range(ncols - 1): perform_extend_line( i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ) @ngjit #@expand_aggs_and_cols def extend_cpu_antialias_2agg(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols): null_value = np.nan accum_agg = aggs_and_cols[0] temp_agg = np.full_like(accum_agg, null_value, dtype=np.float32) temp_aggs_and_cols = (temp_agg,) + aggs_and_cols[1:] ncols = xs.shape[1] for i in range(xs.shape[0]): if i > 0: parallel_fill(temp_agg, null_value) for j in range(ncols - 1): perform_extend_line(i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *temp_aggs_and_cols) # Combined canvas/agg/reduction from above with the others, in some way. if i == 0: accum_agg[:] = temp_agg[:] else: _combine_in_place(accum_agg, temp_agg, antialias_combination) @cuda.jit @expand_aggs_and_cols def extend_cuda(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols): i, j = cuda.grid(2) if i < xs.shape[0] and j < xs.shape[1] - 1: perform_extend_line( i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ) if _use_2_stage_agg(antialias_combination): return extend_cpu_antialias_2agg, extend_cuda else: return extend_cpu, extend_cuda def _build_extend_line_axis1_x_constant( draw_segment, expand_aggs_and_cols, antialias_combination ): @ngjit @expand_aggs_and_cols def perform_extend_line( i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ): x0 = xs[j] y0 = ys[i, j] x1 = xs[j + 1] y1 = ys[i, j + 1] segment_start = ( (j == 0) or isnull(xs[j - 1]) or isnull(ys[i, j - 1]) ) segment_end = (j == len(xs)-2) or isnull(xs[j+2]) or isnull(ys[i, j+2]) if segment_start or antialias_combination != AntialiasCombination.SUM_1AGG: xm = 0.0 ym = 0.0 else: xm = xs[j-1] ym = ys[i, j-1] draw_segment(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, segment_start, segment_end, x0, x1, y0, y1, xm, ym, *aggs_and_cols) @ngjit #@expand_aggs_and_cols def extend_cpu(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols): ncols = ys.shape[1] for i in range(ys.shape[0]): for j in range(ncols - 1): perform_extend_line( i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ) @ngjit #@expand_aggs_and_cols def extend_cpu_antialias_2agg(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols): null_value = np.nan accum_agg = aggs_and_cols[0] temp_agg = np.full_like(accum_agg, null_value, dtype=np.float32) temp_aggs_and_cols = (temp_agg,) + aggs_and_cols[1:] ncols = ys.shape[1] for i in range(ys.shape[0]): # Each time in this loop need to use its own canvas/agg/reduction # So create a temporary one and use that, and need use a "max" reduction. if i > 0: parallel_fill(temp_agg, null_value) for j in range(ncols - 1): perform_extend_line( i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *temp_aggs_and_cols ) # Combined canvas/agg/reduction from above with the others, in some way. if i == 0: accum_agg[:] = temp_agg[:] else: _combine_in_place(accum_agg, temp_agg, antialias_combination) @cuda.jit @expand_aggs_and_cols def extend_cuda(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols): i, j = cuda.grid(2) if i < ys.shape[0] and j < ys.shape[1] - 1: perform_extend_line( i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ) if _use_2_stage_agg(antialias_combination): return extend_cpu_antialias_2agg, extend_cuda else: return extend_cpu, extend_cuda def _build_extend_line_axis1_y_constant( draw_segment, expand_aggs_and_cols, antialias_combination ): @ngjit @expand_aggs_and_cols def perform_extend_line( i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ): x0 = xs[i, j] y0 = ys[j] x1 = xs[i, j + 1] y1 = ys[j + 1] segment_start = ( (j == 0) or isnull(xs[i, j - 1]) or isnull(ys[j - 1]) ) segment_end = (j == len(ys)-2) or isnull(xs[i, j+2]) or isnull(ys[j+2]) if segment_start or antialias_combination != AntialiasCombination.SUM_1AGG: xm = 0.0 ym = 0.0 else: xm = xs[i, j-1] ym = ys[j-1] draw_segment(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, segment_start, segment_end, x0, x1, y0, y1, xm, ym, *aggs_and_cols) @ngjit #@expand_aggs_and_cols def extend_cpu(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols): ncols = xs.shape[1] for i in range(xs.shape[0]): for j in range(ncols - 1): perform_extend_line( i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ) @ngjit #@expand_aggs_and_cols def extend_cpu_antialias_2agg(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols): null_value = np.nan accum_agg = aggs_and_cols[0] temp_agg = np.full_like(accum_agg, null_value, dtype=np.float32) temp_aggs_and_cols = (temp_agg,) + aggs_and_cols[1:] ncols = xs.shape[1] for i in range(xs.shape[0]): if i > 0: parallel_fill(temp_agg, null_value) for j in range(ncols - 1): perform_extend_line( i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *temp_aggs_and_cols ) # Combined canvas/agg/reduction from above with the others, in some way. if i == 0: accum_agg[:] = temp_agg[:] else: _combine_in_place(accum_agg, temp_agg, antialias_combination) @cuda.jit @expand_aggs_and_cols def extend_cuda(sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols): i, j = cuda.grid(2) if i < xs.shape[0] and j < xs.shape[1] - 1: perform_extend_line( i, j, sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ) if _use_2_stage_agg(antialias_combination): return extend_cpu_antialias_2agg, extend_cuda else: return extend_cpu, extend_cuda def _build_extend_line_axis1_ragged( draw_segment, expand_aggs_and_cols, antialias_combination ): def extend_cpu( sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ): x_start_i = xs.start_indices x_flat = xs.flat_array y_start_i = ys.start_indices y_flat = ys.flat_array extend_cpu_numba( sx, tx, sy, ty, xmin, xmax, ymin, ymax, x_start_i, x_flat, y_start_i, y_flat, *aggs_and_cols ) @ngjit @expand_aggs_and_cols def extend_cpu_numba( sx, tx, sy, ty, xmin, xmax, ymin, ymax, x_start_i, x_flat, y_start_i, y_flat, *aggs_and_cols ): nrows = len(x_start_i) x_flat_len = len(x_flat) y_flat_len = len(y_flat) for i in range(nrows): # Get x index range x_start_index = x_start_i[i] x_stop_index = (x_start_i[i + 1] if i < nrows - 1 else x_flat_len) # Get y index range y_start_index = y_start_i[i] y_stop_index = (y_start_i[i + 1] if i < nrows - 1 else y_flat_len) # Find line segment length as shorter of the two segments segment_len = min(x_stop_index - x_start_index, y_stop_index - y_start_index) for j in range(segment_len - 1): x0 = x_flat[x_start_index + j] y0 = y_flat[y_start_index + j] x1 = x_flat[x_start_index + j + 1] y1 = y_flat[y_start_index + j + 1] segment_start = ( (j == 0) or isnull(x_flat[x_start_index + j - 1]) or isnull(y_flat[y_start_index + j - 1]) ) segment_end = ( (j == segment_len-2) or isnull(x_flat[x_start_index + j + 2]) or isnull(y_flat[y_start_index + j + 2]) ) if segment_start or antialias_combination != AntialiasCombination.SUM_1AGG: xm = 0.0 ym = 0.0 else: xm = x_flat[x_start_index + j - 1] ym = y_flat[y_start_index + j - 1] draw_segment(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, segment_start, segment_end, x0, x1, y0, y1, xm, ym, *aggs_and_cols) def extend_cpu_antialias_2agg( sx, tx, sy, ty, xmin, xmax, ymin, ymax, xs, ys, *aggs_and_cols ): x_start_i = xs.start_indices x_flat = xs.flat_array y_start_i = ys.start_indices y_flat = ys.flat_array extend_cpu_numba_antialias_2agg( sx, tx, sy, ty, xmin, xmax, ymin, ymax, x_start_i, x_flat, y_start_i, y_flat, *aggs_and_cols ) @ngjit #@expand_aggs_and_cols def extend_cpu_numba_antialias_2agg( sx, tx, sy, ty, xmin, xmax, ymin, ymax, x_start_i, x_flat, y_start_i, y_flat, *aggs_and_cols ): null_value = np.nan accum_agg = aggs_and_cols[0] temp_agg = np.full_like(accum_agg, null_value, dtype=np.float32) temp_aggs_and_cols = (temp_agg,) + aggs_and_cols[1:] nrows = len(x_start_i) x_flat_len = len(x_flat) y_flat_len = len(y_flat) for i in range(nrows): # Get x index range x_start_index = x_start_i[i] x_stop_index = (x_start_i[i + 1] if i < nrows - 1 else x_flat_len) # Get y index range y_start_index = y_start_i[i] y_stop_index = (y_start_i[i + 1] if i < nrows - 1 else y_flat_len) # Find line segment length as shorter of the two segments segment_len = min(x_stop_index - x_start_index, y_stop_index - y_start_index) if i > 0: parallel_fill(temp_agg, null_value) for j in range(segment_len - 1): x0 = x_flat[x_start_index + j] y0 = y_flat[y_start_index + j] x1 = x_flat[x_start_index + j + 1] y1 = y_flat[y_start_index + j + 1] segment_start = ( (j == 0) or isnull(x_flat[x_start_index + j - 1]) or isnull(y_flat[y_start_index + j - 1]) ) segment_end = ( (j == segment_len-2) or isnull(x_flat[x_start_index + j + 2]) or isnull(y_flat[y_start_index + j + 2]) ) draw_segment(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, segment_start, segment_end, x0, x1, y0, y1, 0.0, 0.0, *temp_aggs_and_cols) # Combined canvas/agg/reduction from above with the others, in some way. if i == 0: accum_agg[:] = temp_agg[:] else: _combine_in_place(accum_agg, temp_agg, antialias_combination) if _use_2_stage_agg(antialias_combination): return extend_cpu_antialias_2agg else: return extend_cpu def _build_extend_line_axis1_geometry( draw_segment, expand_aggs_and_cols, antialias_combination ): def extend_cpu( sx, tx, sy, ty, xmin, xmax, ymin, ymax, geometry, closed_rings, *aggs_and_cols ): values = geometry.buffer_values missing = geometry.isna() offsets = geometry.buffer_offsets if len(offsets) == 2: # MultiLineArray offsets0, offsets1 = offsets else: # LineArray offsets1 = offsets[0] offsets0 = np.arange(len(offsets1)) if geometry._sindex is not None: # Compute indices of potentially intersecting polygons using # geometry's R-tree if there is one eligible_inds = geometry.sindex.intersects((xmin, ymin, xmax, ymax)) else: # Otherwise, process all indices eligible_inds = np.arange(0, len(geometry), dtype='uint32') extend_cpu_numba( sx, tx, sy, ty, xmin, xmax, ymin, ymax, values, missing, offsets0, offsets1, eligible_inds, closed_rings, *aggs_and_cols ) @ngjit @expand_aggs_and_cols def extend_cpu_numba( sx, tx, sy, ty, xmin, xmax, ymin, ymax, values, missing, offsets0, offsets1, eligible_inds, closed_rings, *aggs_and_cols ): for i in eligible_inds: if missing[i]: continue start0 = offsets0[i] stop0 = offsets0[i + 1] for j in range(start0, stop0): start1 = offsets1[j] stop1 = offsets1[j + 1] for k in range(start1, stop1 - 2, 2): x0 = values[k] if not np.isfinite(x0): continue y0 = values[k + 1] if not np.isfinite(y0): continue x1 = values[k + 2] if not np.isfinite(x1): continue y1 = values[k + 3] if not np.isfinite(y1): continue segment_start = ( (k == start1 and not closed_rings) or (k > start1 and (not np.isfinite(values[k - 2]) or not np.isfinite(values[k - 1]))) ) segment_end = ( (not closed_rings and k == stop1-4) or (k < stop1-4 and (not np.isfinite(values[k + 4]) or not np.isfinite(values[k + 5]))) ) if segment_start or antialias_combination != AntialiasCombination.SUM_1AGG: xm = 0.0 ym = 0.0 elif k == start1 and closed_rings: xm = values[stop1-4] ym = values[stop1-3] else: xm = values[k-2] ym = values[k-1] draw_segment(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, segment_start, segment_end, x0, x1, y0, y1, xm, ym, *aggs_and_cols) def extend_cpu_antialias_2agg( sx, tx, sy, ty, xmin, xmax, ymin, ymax, geometry, closed_rings, *aggs_and_cols ): values = geometry.buffer_values missing = geometry.isna() offsets = geometry.buffer_offsets if len(offsets) == 2: # MultiLineArray offsets0, offsets1 = offsets else: # LineArray offsets1 = offsets[0] offsets0 = np.arange(len(offsets1)) if geometry._sindex is not None: # Compute indices of potentially intersecting polygons using # geometry's R-tree if there is one eligible_inds = geometry.sindex.intersects((xmin, ymin, xmax, ymax)) else: # Otherwise, process all indices eligible_inds = np.arange(0, len(geometry), dtype='uint32') extend_cpu_numba_antialias_2agg( sx, tx, sy, ty, xmin, xmax, ymin, ymax, values, missing, offsets0, offsets1, eligible_inds, closed_rings, *aggs_and_cols ) @ngjit #@expand_aggs_and_cols def extend_cpu_numba_antialias_2agg( sx, tx, sy, ty, xmin, xmax, ymin, ymax, values, missing, offsets0, offsets1, eligible_inds, closed_rings, *aggs_and_cols ): null_value = np.nan accum_agg = aggs_and_cols[0] temp_agg = np.full_like(accum_agg, null_value, dtype=np.float32) temp_aggs_and_cols = (temp_agg,) + aggs_and_cols[1:] for i in eligible_inds: if missing[i]: continue start0 = offsets0[i] stop0 = offsets0[i + 1] for j in range(start0, stop0): start1 = offsets1[j] stop1 = offsets1[j + 1] if j > 0: parallel_fill(temp_agg, null_value) for k in range(start1, stop1 - 2, 2): x0 = values[k] if not np.isfinite(x0): continue y0 = values[k + 1] if not np.isfinite(y0): continue x1 = values[k + 2] if not np.isfinite(x1): continue y1 = values[k + 3] if not np.isfinite(y1): continue segment_start = ( (k == start1 and not closed_rings) or (k > start1 and (not np.isfinite(values[k - 2]) or not np.isfinite(values[k - 1]))) ) segment_end = ( (not closed_rings and k == stop1-4) or (k < stop1-4 and (not np.isfinite(values[k + 4]) or not np.isfinite(values[k + 5]))) ) draw_segment(i, sx, tx, sy, ty, xmin, xmax, ymin, ymax, segment_start, segment_end, x0, x1, y0, y1, 0.0, 0.0, *temp_aggs_and_cols) # Combined canvas/agg/reduction from above with the others, in some way. if j == 0: accum_agg[:] = temp_agg[:] else: _combine_in_place(accum_agg, temp_agg, antialias_combination) if _use_2_stage_agg(antialias_combination): return extend_cpu_antialias_2agg else: return extend_cpu